A Primal - Dual Trust - Region Algorithm for Minimizing aNon - convex Function Subject to General Inequality and LinearEquality

نویسندگان

  • Andrew R. Conn
  • Nicholas I. M. Gould
  • Dominique Orban
  • Philippe L. Toint
چکیده

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Primal-dual Trust-region Algorithm for Minimizing a Non-convex Function Subject to General Inequality and Linear Equality Constraints a Primal-dual Trust-region Algorithm for Non-convex Constrained Minimization

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Preliminary numerical results are presented.

متن کامل

A primal-dual trust-region algorithm for non-convex nonlinear programming

A new primal-dual algorithm is proposed for the minimization of non-convex objective functions subject to general inequality and linear equality constraints. The method uses a primal-dual trust-region model to ensure descent on a suitable merit function. Convergence is proved to second-order critical points from arbitrary starting points. Numerical results are presented for general quadratic pr...

متن کامل

A trust region method based on interior point techniques for nonlinear programming

An algorithm for minimizing a nonlinear function subject to nonlinear inequality constraints is described It applies sequential quadratic programming techniques to a sequence of barrier problems and uses trust regions to ensure the robustness of the iteration and to allow the direct use of second order derivatives This framework permits primal and primal dual steps but the paper focuses on the ...

متن کامل

An Affine Scaling Trust Region Algorithm for Nonlinear Programming

A monotonic decrease minimization algorithm can be desirable for nonconvex minimization since there may be more than one local minimizers. A typical interior point algorithm for a convex programming problem does not yield monotonic improvement of the objective function value. In this paper, a monotonic affine scaling trust region algorithm is proposed for nonconvex programming. The proposed aff...

متن کامل

An Interior Point Algorithm for Solving Convex Quadratic Semidefinite Optimization Problems Using a New Kernel Function

In this paper, we consider convex quadratic semidefinite optimization problems and provide a primal-dual Interior Point Method (IPM) based on a new kernel function with a trigonometric barrier term. Iteration complexity of the algorithm is analyzed using some easy to check and mild conditions. Although our proposed kernel function is neither a Self-Regular (SR) fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999